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T H E  S T A B I L I T Y  O F  A C O M P R E S S E D  R O T A T I N G  R O D  

T.  A .  B o d n a r '  UDC 539.3 

The classical stability pwblem of a compressed hinged elastic rod rotating with constant angular 
velocity about the azis that passes through the hinges is considered. It is assumed that the 
compressive force is constant and the line of its action coincides with the axis of rotation of 
the rod. The stability of a solution of the nonlinear problem that describes deformation of the 
rod under the action of the compressive force and the distributed centrifugal load is studied 
within the framework of the stability theory, of dynamic systems with distributed parameters. 
The buckling paTumcters of the problem are determined. Calculation results are given. 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m .  We consider a simply suppor ted  elastic rod compressed by the 
constant force P which rotates with constant angular velocity w (Fig. 1). Before loading, the axis of the rod 
is a straight line which coincides with the x taxis. After buckling, the curved rod is subjected to the force P 
and the distributed (~entrifugal load q(x) = m(x)w2y(x), where re(x) is the  mass per unit length of the rod 
and y(x) is the deflection of the loaded rod. It is assmlmd that the line of action of the force passes through 
the hinges. It is required to determiim the conditions under which the rod  buckles. 

A part  of the curved rod (Fig. 2) is in equilibrium if the stun of the moments  of all the forces that act 
on this par t  of the rod about  an arbi t rary point vanishes: 

I~i + l~lp + lllq -= 0. (1.1) 

Here/~I is the internal bendiug moment and/~[p and 5Iq are the monmnts of the force P and the distributed 
load q, respectively. These moments are related to the deflection by the formulas [1] 

d':j [ (d.:j - ' "  
5I  = E I p ( x )  LI + J , M p  = P y ,  

l "El Xl 

0 0 0 0 

in which l is the length of the rod, E is the modulus of el~sticity, I is the cross-sectional moment  of inertia, 
p(x) is a flmction that specifies the variation of the bending rigidity along ~he rod, and xl and x2 are the 
integration variables. The equation of bending (1.1) can be combined with the expressions for the moments 

to give 

Elp(x)  d2y[ (dYe2] -1"5 
dx---~2 1 + \ dx / + Pg 

I ,L'~ ? J:] 

+ l , / "  [ f f 'q(x2)d:r ,2]dxl- .]  [ , / q ( x 2 ) d x 2 l d x l  = O. 

0 0 0 0 

(1.2) 
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In a rigorous nonlinear formulation, tile boundary conditions are formulated with allowance for the 
l 

disl)lacement of the right end of the rod A = / (d~xq)2dx because of its bending (the rod is assumed to be 

0 
incompressible): 

y(0) = y(l - / x )  = 0. (1.3) 

The conditions at the right end of the rod depend on the solution of the problem: hence, Eqs. (1.2) and 
(1.3) must be regarded as a system of coupled equations which can be solved only by numerical methods.  In 
using analytical nl(:thods of solution, it is expedient to pass from the coordinate system (x, y) to the system 
(s, y), where s is the coordinate reckoned along the curved axis of tile rod (Fig. 2). TiLe coordinates x and s 
are related by tile well-known relation between tim differentiation operators: 

A = [1-  (dY~l-~ a (1.4) 
dx \ ds ] J ds" 

Before passing to t , .  ~ew coordinate system, we reduce the integro-differential equation (1.2) to an 
equiwdent differential equation. Differentiating Eq. (1.2) twice with respect to x, we obtain 

d'2 E Ip !x )  ~ [1 + + P - m ( x ) w 2 y  = 0. (1.5) 
d:r 2 \ dar / / J 

Using the differentiation operator (1.4), we determine the deri~'atives 

d.q"--~" \ ds / J d-~ ' d:r 2 \ ds ] ds '2 

and the moment ,t::,j~ (d:j)'2]-,,.~ 
M = E I ~ ( ' ~ ! ~ [ 1 - \ d . ~  j �9 

which can be written in the form of power series: 

_ !(d:,j~"- 3 (d:j~ O( dy d..,, d,,[l+ + + ~)], 
dx ds 2 \ d s ]  8 \ d s ]  

dx 2 ds 2 \ ds ] k ds ] \ I ds I ] 

1(~!j~2 3 ( ~ ,  o( ~ 
+ + + )1 

Applying the differentiation operator (1.4) to the last equation twice, we obtain 

d2M - E I [p ( s )  dig dp(.s) d3!!  d2p(s) d2y 
dx 2 ~ + 2 d---Z ds ---5 + (ts ~ ds 2 

+ p(s) 
ds 4 \ ds ] ds ~ ds 3 \ ~ / 

+ 3 ~.~ \ ds3 k ds ] + , , . , , , ~ o  / ] ds 2 ds2 k ds 2 
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The resulting relations allow one to write Eq. (1.5) in the form of a sum comprising the linear operator 

day dp(s) d3y ( d 2 f ! ; )  )d'2Y 
Ly = p(s) ~ + 2 --ds --ds 3 + \ d,s 2 + k2 ~ -- m(s)w21g" 

the nonlinear operator 

.zvy = p(s) \~  ~ , ~ /  + 4 ds ds" ds~ + \d-~'~ J ] 

+ 3 ~ , , . , t ~ , , , , ~ 8 /  + Z t . W - ' )  + .~ ds ~ 
and higher-order terms: 

ny + g y  + O( [y]5 ) = O. 

ds ~- \ ds ] ' 

(1.6) 

In the expressions for tim operators Ly and Ny,  tim following notation is used: k 2 = P / ( E I )  and w 2 = 

~ , " t ( E S ) .  
Equat ions (1.6) must be supplemented by four boundary conditions (two boundary conditions at the 

points s ---- 0 and s = l). As applied to the rod considered, these conditions require that the deflections and 
tile internal bending monlents at  the ends of the rod wmish: 

d - ' , ( 0 )  _ d 2 : r  _ 0 .  ( 1 . 7 )  
�9 y ( 0 )  = :,/(0 = 0, ds2  ds2  

From the viewl)oint of the general mathematical theory [2, 3], the stability analysis of the solution 
of the nonlinear t)roblem (1.6), (1.7) is similar to the stability analysis of an immovable rod compressed by 
a constant force [4]. First, the spectral problem is solved and tile space of eigenfimctions of the generator 
Lg is constructed. Then, the amplitude is deternfined as a projection of the solution of Eq. (1.6) onto the 
eigenst)ace associate(l with a conjugate eigenvector that  t)elongs to the nmximum eigenvalue of the spectrum. 
Finally, a solution of prol)lem (1.6), (1.7) is constructed in the form of a power series of the amI)litude. 

2 .  S o l u t i o n  of  t h e  S p e c t r a l  P r o b l e m .  The spectrunl 
cry, (n = 1, 2 . . . .  ) of the boundary-value problem 

Ly + (y2y = O, y(O) ---- y(l) = (), 

of the generator Ly consists of the eigenvalues 

d2.;/(O) d2W) 
ds  2 d s  2 

- -  = O. ( 2 . 1 )  

The eigenfimctions y,~ associated with the eigenvahms a 2 (n -- 1, 2 . . . .  ) and any linear combinations of these 
eigenfunctions are the solutions of problem (2.1). The scalar product is determined in the space of these 
fimctions; therefore, tile concept of amplitude can be introduced. 

To determine the ampli tude and establish the solvability of problem (1.6), (1.7), it is necessary to 
construct a conjugate operator L* that  satisfies the Green fornmla [5] 

l 

/ [y*Ly - yL*y*] dx = L+[y,y* l 

o 

Here g and y* are any solutions of the direct and conjugate problems, respectively; L+ [y, g*] L ~ is the t) ilinear 

form of the fimctions y and y* and their derivatives of up to the third order inclusively. 
The differentiation form L'y* conjugate to the form Lg is given by 

L*:,f = jL-V~[p(sly*l- ~[~-W-~* ] + ~ t \  d--a7 +k -~_.:; -,,~(~)~:; 
Calculating the derivatives and combining the terms, we obtain 

d4y * dp(s) d3y * (d2p(s) ~ d2y * 
n*y = p(s) ~ + 2 - -  ds 3 + \ ds 2 + k2] ~ - m(s)~2Y*" 
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It  follows tha t  the  opera tor  L is self-conjugate: L = L*. To determine the I)oundary conditioim of the operator  

L*, we write the  right side of the Green formula in the bilinear form 

L+[y, = p(s)y* d3y d q* dp(s) d2y 
-- p( s ) d,s d,s g* d ,~ 2 

+ + k2u * _ 
+ d,, + J0" 

+ [ y , y  1 L * . One can readily veri .fy that  = 0 for arbi t rary dy/ds ,  d3q/d~ 3, dy*/ds ,  and day*/ds 3 provided 

d2y*(o) d2,.f(O 
y*(0 )  = V*(1) = O, ds-------- 2 -  - ds 2 = 0. (2.2) 

Compar ing  the  bounda ry  conditions (2.2) of the conjugate problem, fbr which the biliimar form of the 

Green fornmla vanishes,  with conditions (1.7), we infer tha t  problem (2.1) is self-conjugate for all continuous 

fimctions p(s) and  their  derivatives of up to the third order inclusively. The fact that  the problem is self- 

conjugate simplifies its solution. However, because of the variable coefficients p(s) and re(s), the analytical 

deternfinat ion of the  eigeasolutions of  problem (2.1) is a difficult mathemat ica l  problem. Therefore, below, 

without  loss of  general i ty we assume tha t  the rod is characterized by the constant  rigidity p = 1 and the 

constant specific mass  m ---- m0. 
For cons tan t  coefficients, p rob lem (2.1) admits the exact solution 

y = cl sin (As) + c2 cos (A~I + c3s + ca, (2.3) 

where el, c2, c3, and  c:t are a rb i t ra ry  constants.  Solving the I)ouiMary-wdue problem (2.3), (2.1), we obtain 

the sys tem 

e2 + c4 = O, ct sin (M) + c2 cos (M) + cal + cI = O, 

c2 = 0, elk'-' sin (M) + c2k2 cos (A/) = 0, 

which implies tha t  c2 = c3 = c=~ = 0. Prol)lexn (2.1) has a nontrivial solution when ct # 0 and the parameter  
A takes on discrete  vahms, An = n, Trl - l  (n = 1, 2 . . . .  ) associate(l with tile eigenflmctions y,,, = ct sin (A,~s). 

The eigenfunctions are (letennined up to a constant factor; we set cl = 1 and use it as a coefficient with the 
dinmnsion of length.  The  choice of  the vahm of cl is nmtiw~ted by the fact tha t  within the fl'amework of 

the method,  the  eigenflmctions yn (n = 1, 2 . . . .  ) are regarded merely as independent  coordinates of a ('ertain 

space of flmctions.  In other words, the coefficient ct in the equation for rod deflection can take on different 

nonzero values. 
The  eigenflmctions of the opera to r  L* which are conjugate relative to the scalar product coincide with 

the eigenflmctions of the opera tor  L with accuracy up to arbitrary factors An, since the problem is self- 
('onjugate: y,* = Anyn .  Subst i tut ion of the eigenfunctions Yn into the differential equation (2.1) yiel(ls the 

characterist ic equa t ion  for the eigenvalues of the opera tor  L: 

2 " 4 (n 1 ,2  . . ) .  (2.4)  2 A,~k- + m,0w 2 )~,~ = ( 7  n -~-- - -  , .  

It  follows f rom Eqs. (2.4) that  there exists an infinite set of values of the force P tha t  corresl)ond to curvilinear 

configurations of the  rod. The  nlinimuin value of the axial force is determine(1 by the eigenvalue a~. 
We intro(luce the notat ion cr~ - : -  #7r2/-2, where p is a parameter  from the zero-containing open interval. 

L q t h  allowance for the expressions for k:  and w~, we write Eq. (2.4) for n = 1 in the form 
# = P / ( E I )  + mow'2lZ/(EITr "2) - (rr/l) '2. (2.5) 

The  solut ion of the linear p rob lem (2.1) is stable for # < 0 and unstable  fbr # > 0. In the linear 

approximat ion,  the  critical axial force is determined from tim condition # = 0 as follows: 
P *  = EITr2 / l  2 - mow212 /Tr 2. (2.6) 
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For w = 0, relation (2.6) coincides with the well-known Euler formula [1]. Solution (2.6) of the linearized 
problem (2.1) coincides with the solution of tile stability problem of a rod on an elastic foundation [6, 7] if 
the elastic-foundation coefficient is assumed to be negative. 

One can also determine the critical velocity of rotation ~z* = v/EITr-l/(mol 4) - P~r~/(mol2). In the 
space of tile independent coordinates P,  l, and w, the stability of tile solutions of the boundary-value problem 
(2.1) is bounded  by the surface #(P,  l ,w) = O. 

3. S t a b i l i t y  of  t he  B i f u r c a t i o n  Solu t ion .  It is well known that an iminovable rod buckles if the 
load exceeds the  critical value obtained from the solution of the linearized problem [6, 7]. It follows from the 
theory of nonlinear operator equations [8] that in the neighborhood of the bifurcation point of the solution 
of tile linearized equation # = 0, tile nonlinear equation (1.6) has small nontrivial solutions for # < 0 and 
p > 0. Since the operators Ly and N y  are smooth, tile nontrivial solution is unique and contains information 
on the load and  rod configurations after buckling. 

Using the  relation ]~:2 __ I t  _ _  mow'~12/~2 + (7r/l)2, which follows from (2.5), we rewrite the operators Ly 
and N g in Eq. (1.6) with allowance for the fact tha t  the rod is uniform: 

d4y m0w2/2 7i" 2 d2g ,) 

g , y -  3 d'~j (~:,j)~ dy Z'-:j d:'y (d~3  
2 ds 4 \ ds / + 4 ds ds 2 ds :~ + \ ds 2 ] 

Bearing in mind (3.1) and (3.2), we write Eq. (1.6) in the form of a series in powers of y and # in the 
neighborhood of the point (y, #) = (0, 0): 

OLo 
L0!; + ,  ~ :; + N0(y. y. :2 + O( M 5 ) = 0. (3.3) 

where Log = Lp=0g and No(y , y , y )  -= ?~,=o(Y,g, Y). Now, we define the amplitude as a scalar product 
l 

~ = YYL d. and seek a solution of Eq. (3.3) in the form of series in powers of e: 

0 

Y = k! ' # = k! 
k =  1 k =  ! 

where ](~. and ttt~ are the expansion coefficients to be determined. 
Subst i tu t ing series (3.4) into Eq. (3.3) and collecting terms of like powers of ~ up to the third power, 

we obtain the system 

LoY1 = 0: (3,5) 

OLo 
LoY_) + 21tt ~ ]'] = 0; (3.6) 

OLo OLo 
Lo}~ q- 3#1 - ~ p  )2 -4- 3#2 ~ Yt + 6No()'I, }1-}"1) = O. (3.7) 

Equat ion (3.5) has tile unique sohttion Yt = Yt- The general solution of the nonhomogeneous equation 
(3.6) is wri t ten  as a sum of the solution of the homogeneous equation L01'.2 = 0, which coincides with the 
solution of Eq. (3.5), and the particular solution of Eq. (3.6). Tim sok~bility condition of this equation 

l 1 

f OLo #lrr2 f #~u; ~ Y, &" = z---T-., u~uT d.- = 0 
0 0 
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holds only for lq = 0. It follows tha t  the particular solution of Eq. (3.6) is zero. 
The  solvability condition of the nonhomogeneous equation (3.7) 

l I 

tz2 Y, -01-- [ !]1 dx y~ No(yl,  YI, !JJ ) dx = 0 

and tile relat ion 

can be combined to give 

O Lo 7r 2 
Olz gl = --['2. ya 

l 1 

[/ 1' It2 = ~ ] yl No(Yl, Yl , Yl ) d:r . gly~ dx (3.8) 
0 0 

Subst i tu t ing  (3.8) into (3.4), we obtain the bifurcation solution 

It = 0.5#2~ 2, (3.9) 

which determines the stability boundary  of the solution of the nonlinear problem (1.6) and (1.7) in the plane 
(It. ~). For the solut ion (3.9) be unique, it is necessary to use the normalization condition .r = 1, which follows 
from tile definition of the aml)litude [4]. This condition implies the formula for the coefficient 

I 

A t  = . y~ d x  cf l  

o 

in the expression for the conjugate eigenvector !1~. 
Sul)st i tution of !1,, !1~ into formula (3.8) yMds an exact value of tile parameter  It'_, = c ~ / ( 4 1 1 )  + 

,} , )  

cun0~,' ~. Combining the last relation, Eq. (2.5), and the normalizing condition z = 1. we write Eq. (3.9) in 
the form 

EZ + ~ - o -  - ~ + . ~ 7  (3.1o) 

Solution (3.10) is called a supercritical solution. It exists only for it > 0 [the left side of (3.10) is equal to It 
and the right side is always positive] and is stable in the neighborhood of the point l L = 0. 

Equat ion (3.10) implies tha t  tim maximum h)ad Pm~x at which tile rod buckles has the form 

P m a x -  12 8l 2 ] 2 " 

In the case where tile rod of length l = ~- is immo~fl)le (w - 0), we obtain Pmax = 1.125EL which corresponds 
to the result ob ta ined  for a mfiform rod in [4]. From (3.11). one can readily determine the limiting angular 
velocity at a cer ta in  load wflue, inclu(!ing P = 0. Figure 3 shows the maxinmm load Pm~• as a fimction of 
the parameter  It = l~ "-L art(1 the angular  velocity w for the case where m0 = 0.1 kg/m,  E I  = 1 N- m 2, and 
cx = 1 m. It follows fi'om formula (3.11) and Fig. 3 that  the rotating rod !tackles for a smaller compressive 
h)rce (:ompared to the immovable rod; the rod compressed by the axial tbrce buckles at a smaller angular 

w~locity compared  to the unloaded rod. 
Astapov and Kornev [9] obta ined a rvlation between the maximmn load and the deflection of an 

immowd)le rod f l -  For w = 0 and ct = .fl, expression (3.1I) coincides with the result of [9] with accuracy ut) 

to rr(q -(i. 
The  rod configuration that corresponds to the maximum load is determined by the formula 

tj = Yt~  + Y~p~a/3!. (3.12) 

which [bllows from (3.4). The flmetion Yl is the solution of tim homogeneous problem (3.5). The fimction Yap 
is the part icular  solution of the nonhomogeneous problem (3.7). Tim solutions of the homogeneous problem 
(3.6) axt(l the correst)onding homogeneous problem (3.7) are allowed for by the first term in (3.12). 
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For tile known solution of the homogeneous equat ion  LoY~ = 0 [which coincides with the solution of 
Eq. (3.5)], the particular solution of the nonhomogeneous equation (3.7) has the form [5] 

8 

/ Y3p--siIi (Als) [31t20LO Y1 + 6N0(:i~, Yl, ~ ) ]  cos (Als) ds. (3.13) 

0 
The integral on the right side of (3.13) is expressed in terms of elenmntary functions; however, the rc~ 
sulting expression is cumbersome and is omitted here. To determine the deflection y at any point s, we 
substi tute (3.13) into (3.12)2 Let, for example, I ---- 27r. Substituting this value into (3.11), we deter- 
mine tile maximum load P,,,~• = 0.258EI - 3.5nt0~ 2. Th e  maximum deflection of the rod Yma• occurs at 
the mid-sI}an of tile rod (s = 7r). Using 7r as the upper  limit of integTation on the right side of (3.13), 
we obtain ~.'.~p(;r) = 0.178 + 0.75[l~ow2/(EI). Further,  assuming that  Yl(~r) = 1, from (3.12) we obtain 
g,m~ = ~ + (0.0297 + 0.125mow2/(EI))a 3. The normalizat ion a = 1 shows that  the linlit load corresponds to 
the maximum deflection of the rod ymax = 1.0297 + O.125mow2/(EI). The  following particular cases follow 
from the abow~ results: for ,r = 0 and l = 27~, we have Pm~x = 1.032P* and ym~,x/l = 0.164: for tim zero load, 
the rod of the sanle length buckles at the angular velocity w = 1.179w'*. 

Calculating the derivatives dy/ds ibr w = 0 and l = 27~, we infer tha t  at the ends of the rod, the 
tangent to the rod axis makes an angle of about 27 ~ to the x axis. It follows that  the calculation results for 
w = 0 and l = 2;r agl'ee with the data of [9, Tat)le 1]. 
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