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THE STABILITY OF A COMPRESSED ROTATING ROD

T. A. Bodnar’ UDC 539.3

The classical stability problem of a compressed hinged elastic rod rotating with constant angular
velocity about the aris that passes through the hinges is considered. It is assumed that the
compressive force is constant and the line of its action coincides with the axis of rotation of
the rod. The stability of a solution of the nonlinear problem that describes deformation of the
rod under the action of the compressive force and the distributed centrifugal load is studied
within the framework of the stability theory of dynamic systems with distributed parameters.
The buckling paramcters of the problem are determined. Calculation results are given.

1. Formulation of the Problem. We consider a simply supported elastic rod compressed by the
constant force P which rotates with constant angular velocity w (Fig. 1). Before loading, the axis of the rod
is a straight line which coincides with the x axis. After buckling, the curved rod is subjected to the force P
and the distributed centrifugal load g(z) = m(x)w?y(x). where m(z) is the mass per unit length of the rod
and y(z) is the deflection of the loaded rod. It is assumed that the line of action of the force passes through
the hinges. It is required to determine the conditions under which the rod buckles.

A part of the curved rod (Fig. 2) is in equilibriun if the sum of the moments of all the forces that act
on this part of the rod about an arbitrary point vanishes:

M+ Mp+ M, =0. (1.1)
Here M is the internal bending moment and Ap and AJ; are the moments of the force P and the distributed
load ¢, respectively. These moments are related to the deflection by the formulas [1]
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in which [ is the length of the rod, E is the modulus of elasticity, I is the cross-sectional moment of inertia,
p(x) is a function that specifies the variation of the bending rigidity along the rod, and 21 and x, are the
integration variables. The equation of bending (1.1) can be combined with the expressions for the moments
to give
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Fig. 1

In a rigorous nonlinear formulation, the boundary conditions are formulated with allowance for the
I
duyn 2
displacement of the right end of the rod A = / (ﬁ) dx because of its bending (the rod is assumed to be
incompressible):
y(0) =y(l - A) =0. (1.3)

The conditions at the right end of the rod depend on the solution of the problem: hence, Egs. (1.2) and
(1.3) must be regarded as a system of coupled equations which can be solved only by numerical methods. In
using analytical methods of solution, it is expedient to pass from the coordinate system (z,y) to the system
(s,y). where s is the coordinate reckoned along the curved axis of the rod (Fig. 2). The coordinates z and s
are related by the well-known relation between the differentiation operators:

Ed.’; - [1 (ZZ) ] )(;.!9' (1.4)

Before passing to t.. ew coordinate system, we reduce the integro-differential equation (1.2) to an
equivalent differential equation. Differentiating Eq. (1.2) twice with respect to x, we obtain

d? d*y dy\2\—1-5 d?y 2 .
) I:EI/)(J) ;]—13(1 + (E) ) j’ + P ke m(r)wy = 0. (1.5)

Using the differentiation operator (1.4), we determine the derivatives
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Applying the differentiation operator (1.4) to the last equation twice. we obtain
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and the moment

which can be written in the form of power series:
dy
ds
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The resulting relations allow one to write Eq. (1.5) in the form of a sum comprising the linear operator

d'y . dp(s) & (dzp(S) +k2) Ly

e - — —— D ——r—— — — 2
Ly = p(s) dst +2 ds ds° + ds? ds? m{s)wry.

the nonlinear operator
3 dty rdy\2 dy d®y d3y d?y 3
Yy = - == 10— = -
Ny ”(S)(2 wila) Mot (d.s?) )

+3 dp(s) (d3y (512)2 + dy (@)2) + <-3—' p(s) + 2k~2) dy ((_ig)l

o

ds \ds®\ds ds \ ds2 2 ds? ds? \ds

and higher-order terms:
Ly+ Ny+O(ly]>) =0. (1.6)

In the expressions for the operators Ly and Ny, the following notation is used: k? = P/(EI) and w?® =
2
w?*/(EI).
Equations (1.6) must be supplemented by four boundary conditions (two boundary conditions at the
points s = 0 and s =[). As applied to the rod considered, these conditions require that the deflections and

the internal bending moments at the ends of the rod vanish:
d*y(0) _ Py()
W0 =yiy=0, LE="Lloo wL7)

From the viewpoint of the general mathematical theory [2, 3], the stability analysis of the solution
of the nonlinear problem (1.6), (1.7) is similar to the stability analysis of an immovable rod compressed by
a constant force [4]. First, the spectral problem is solved and the space of eigenfunctions of the generator
Ly is constructed. Then, the amplitude is determined as a projection of the solution of Eq. (1.6) onto the
cigenspace associated with a conjugate eigenvector that belongs to the maximum eigenvalue of the spectrum.
Finally, a solution of problem (1.6), (1.7) is constructed in the form of a power series of the amplitude.

2. Solution of the Spectral Problem. The spectrum of the generator Ly consists of the eigenvalues
o2 (n=1,2,...) of the boundary-value problem

ds?
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Ly+o2y=0,  y(0)=y{l) =0, St = = 0. 2.1
y+oy y(0) = y(1) 12 e (2.1)
The eigenfunctions y, associated with the eigenvalues o2 (n=1,2....) and any linear combinations of these

eigenfunctions are the solutions of problem (2.1). The scalar product is determined in the space of these
functions; therefore, the concept of amplitude can be introduced.

To determine the amplitude and establish the solvability of problem (1.6), (1.7), it is necessary to
construct a conjugate operator L* that satisfies the Green formula [5]
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Here y and »* are any solutions of the direct and conjugate problems, respectively; L [y, y*]l is the bilinear
0
form of the functions y and y* and their derivatives of up to the third order inclusively.
The differentiation form L*y* conjugate to the form Ly is given by
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Calculating the derivatives and combining the terms, we obtain
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It follows that the operator L is self-conjugate: L = L*. To determine the boundary conditions of the operator
L*, we write the right side of the Green formula in the bilinear form
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Comparing the boundary conditions (2.2) of the conjugate problem. for which the bilinear form of the
Green formula vanishes, with conditions (1.7), we infer that problem (2.1) is self-conjugate for all continuous
functions p(s) and their derivatives of up to the third order inclusively. The fact that the problem is self-
conjugate simplifies its solution. However, because of the variable coefficients p(s) and m(s), the analytical
determination of the eigensolutions of problem (2.1) is a difficult mathematical problem. Therefore, below,
without loss of generality we assume that the rod is characterized by the constant rigidity p = 1 and the
constant specific mass m = mg.

For constant coefficients, problem (2.1) admits the exact solution

l
0

One can readily verify that L[y, y*]

y = ¢y sin(As) + co cos (As) + ez + cy, (2.3)

where ¢}, c2, c3, and ¢y are arbitrary constants. Solving the boundary-value problem (2.3), (2.1), we obtain
the system

ca+cy =0, eysin (Al) + cacos (M) + ezl + ¢4 =0,

¢y = 0, erk?sin (M) + e2k® cos (M) = 0.

which implies that ¢2 = ¢3 = ¢4 = 0. Problem (2.1) has a nontrivial solution when ¢; # 0 and the parameter
A takes on discrete values. A\, = nwl™! (n = 1.2,...) associated with the eigenfunctions y, = ¢ sin(Aps).
The eigenfunctions are determined up to a constant factor; we set ¢; = 1 and use it as a coefficient with the
dimension of length. The choice of the value of ¢; is motivated by the fact that within the framework of
the method, the eigenfunctions ¥, (n = 1,2....) are regarded merely as independent coordinates of a certain
space of functions. In other words, the coefficient c| in the equation for rod deflection can take on different
nonzero values.

The eigenfunctions of the operator L* which are conjugate relative to the scalar product coincide with
the eigenfunctions of the operator L with accuracy up to arbitrary factors A, since the problem is self-
conjugate: y* = A,y,. Substitution of the eigenfunctions y, into the differential equation (2.1) yields the
characteristic equation for the eigenvalues of the operator L:

02 = N2k + mow? — A} (n=1.2,...). (2.4)

It follows from Egs. (2.4) that there exists an infinite set of values of the force P that correspond to curvilinear
configurations of the rod. The minimum value of the axial force is determined by the eigenvalue o7.
We introduce the notation af = pr?l™?, where p is a parameter from the zero-containing open interval.
With allowance for the expressions for k% and wf. we write Eq. (2.4) for n = 1 in the form
p = P/(EI) + mgw*l?/(EIT*) — (7 /1)*. (2.5)

The solution of the linear problem (2.1) is stable for ;¢ < 0 and unstable for ;¢ > 0. In the linear
approximation, the critical axial force is determined from the condition x = 0 as follows:
P* = EI7%/I2 — mow? /7. (2.6)
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For w = 0, relation (2.6) coincides with the well-known Euler formula [1]. Solution (2.6) of the linearized
problem (2.1) coincides with the solution of the stability problem of a rod on an elastic foundation [6, 7] if
the elastic-foundation coefficient is assumed to be negative.

One can also determine the critical velocity of rotation w* = /EIx4/(mgl?) — Pr2/(mgl?). In the
space of the independent coordinates P, [, and w, the stability of the solutions of the boundary-value problem
(2.1) is bounded by the surface u(P.I,w) = 0.

3. Stability of the Bifurcation Solution. It is well known that an immovable rod buckles if the
load exceeds the critical value obtained from the solution of the linearized problem [6, 7]. It follows from the
theory of nonlinear operator equations [8] that in the neighborhood of the bifurcation point of the solution
of the linearized equation p = 0, the nonlinear equation (1.6) has small nontrivial solutions for g < 0 and
1 > 0. Since the operators Ly and Ny are smooth, the nontrivial solution is unique and contains information
on the load and rod configurations after buckling.

Using the relation k2 = p — mowil?/7? + (7 /1), which follows from (2.5), we rewrite the operators Ly
and Ny in Eq. (1.6) with allowance for the fact that the rod is uniform:

| 22
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Bearing in mind (3.1) and (3.2), we write Eq. (1.6) in the form of a series in powers of y and u in the
neighborhood of the point (y, u) = (0,0):

dLo 5
Loy + 1t Tt No(y,y.y) + O(ly|”) = 0. (3.3)
where Loy = Ly=oy and No(y.y,y) = Nu=o(y, 4, y).- Now, we define the amplitude as a scalar product

[
£ = / yyi ds and seek a solution of Eq. (3.3) in the form of series in powers of <:
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where Y and u are the expansion coeflicients to be determined.
Substituting series (3.4) into Eq. (3.3) and collecting terms of like powers of < up to the third power,
we obtain the system

LOY1 =0: (35)
. 0Ly _,
Yo+ 24 —Y] =0; 3.6
LoYs + 2 o Y1=0 (3.6)
OLg .. 0Ly . e e e
350y —— Yo g ——— 3Np(11.17.Y)) = 0. 3.
L0}3+3;L1 UM }‘_+3/L2 0“ Y| + 6 ()( 1.1 )1) 0 (J 7)

Equation (3.5) has the unique solution Y, = y;. The gencral solution of the nonhomogencous equation

(3.6) is written as a sum of the solution of the homogeneous equation LoY5 = 0, which coincides with the
solution of Eq. (3.5), and the particular solution of Eq. (3.6). The solvability condition of this equation

l .
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holds only for u; = 0. It follows that the particular solution of Eq. (3.6) is zero.
The solvability condition of the nonhomogeneous equation (3.7)
l L l
1y / Uy (TO yrde +2 / YiNo(y1.y1.y1dde =0
L .

o 0

i

and the relation

can be combined to give

2[2 . . -1
My = = ’!/1N()(!/l#!/l,‘!jl)di”[/.‘1121/’1k d-’l'] . (3.8)

0 0
Substituting (3.8) into (3.4), we obtain the bifurcation solution

= 0.5p9e>, (3.9)

which determines the stability boundary of the solution of the nonlinear problem (1.6) and (1.7) in the plane
(1. ). For the solution (3.9) be unique, it is necessary to use the normalization condition ¢ = 1, which follows

from the definition of the amplitude [4]. This condition implies the formula for the coefficient
{

~1

A 2

A = VPdrl =2
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in the expression for the conjugate eigenvector y.

Substitution of yi. y; into formula (3.8) vields an exact value of the parameter us = cint/(41%) +
cimgwi. Combining the last relation, Eq. (2.5), and the normalizing condition ¢ = 1, we write Eq. (3.9) in
the form
ﬁ_ + mow?l? B <E)2 _ C—fﬁ (7:]2771();4.}2 (3.10)
EI ElIx? [ 8l 2ET1 )
Solution (3.10) is called a supercritical solution. It exists only for 1 > 0 [the left side of (3.10) is equal to p
and the right side is always positive] and is stable in the neighborhood of the point p = 0.

Equation (3.10) itplies that the maximum load Ppax at which the rod buckles has the form

EIx? cAn? 22
Poax = T(l + 811‘2 ) - ’”'Owl(’ﬂ_—.z - 51) (311)

In the case where the rod of length | = 7 is immovable (w = 0), we obtain Py = 1.125E1. which corresponds
to the result obtained for a uniform rod in [4]. From (3.11). one can readily determine the limiting angular
velocity at a certain load value, including P = 0. Figure 3 shows the maximum load Pyax as a function of
the parameter I; = I7~! and the angular velocity w for the case where mg = 0.1 kg/m, EI = 1 N - m?, and
ey =1 m. It follows from formula (3.11) and Fig. 3 that the rotating rod hnckles for a smaller compressive
force compared to the immovable rod; the rod compressed by the axial force buckles at a smaller angular
velocity compared to the unloaded rod.

Astapov and Kornev [9] obtained a relation between the maxinmun load and the defection of an
immovable rod fi. For w = 0 and ¢ = f[, expression (3.11) coincides with the result of [9] with accuracy up
to 70776,

The rod configuration that corresponds to the maximum load is determined by the formula
y =Y+ Y’ /3L (3.12)

which follows from (3.4). The function Y} is the solution of the homogeneous problem (3.5). The function Y3,
is the particular solution of the nonhomogeneous problem (3.7). The solutions of the homogeneous problem
(3.6) and the corresponding homogeneous problem (3.7) are allowed for by the first term in (3.12).
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For the known solution of the homogeneous equation LyY; = 0 [which coincides with the solution of

Eq. (3.5)], the particular solution of the nonhomogeneous equation (3.7) has the form [5]
8
: ", Lo -
Y3, = sin (/\ls)/ [3/@ En Y7 + 6Ny (Y1, Y1, 1)] cos (\15) ds. (3.13)
: ) K

The integral on the right side of (3.13) is expressed in terms of elementary functions; however, the re-
sulting expression is cumbersome and is omitted here. To determine the deflection y at any point s, we
substitute (3.13) into (3.12). Let, for example, | = 27. Substituting this value into (3.11), we deter-
mine the maximum load Poax = 0.258ET — 3.5mow?. The maximum deflection of the rod ymax occurs at
the mid-span of the rod (s = «). Using 7 as the upper limit of integration on the right side of (3.13),
we obtain Yi,(m) = 0.178 + 0.75mew?/(EI). Further, assuming that Yi(w) = 1, from (3.12) we obtain
Ymax = € + (0.0207 + 0.125mgw? /(ET))s3. The normalization ¢ = 1 shows that the limit load corresponds to
the maximum deflection of the rod ymax = 1.0297 + 0.125mguw? /(EI). The following particular cases follow
from the above results: for w = 0 and | = 27, we have Ppax = 1.032P* and ynmax/l = 0.164; for the zero load,
the rod of the same length buckles at the angular velocity w = 1.179«*.

Culculating the derivatives dy/ds for w = 0 and [ = 27, we infer that at the ends of the rod, the
tangent to the rod axis makes an angle of about 27° to the o axis. It follows that the calculation results for
w =0 and [ = 27 agree with the data of [9, Table 1].
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